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THE EXPERIMENTAL DETERMINATION OF THE MOMENTS OF INERTIA
OF AIRPLANES

By HartrLeY A. Sourf and Marver P. MILLEr

SUMMARY

The application of the pendulum method to the experi-
menlal determination of the momenis of inertia of air-
planes 18 discussed in this report. Particular reference
18 made to the effects of the air, in which the airplane is
immersed, on the swinging tests and to the procedure by
which these effects are taken into account.

Congsideration of the effects of the ambient air has shown
that the virtual moment of inertia of the airplane about
any given axis of oscillalion must be regarded as made up
of three distinct parts; namely, that of the structure, that
of the air entrapped within the structure, and that of the
apparent additional mass of external air influenced by the
airplane’s motion. As the true moment of inertia consists
only of the momenis of inertia of the structure and the
endrapped air, the apparent additional moment of inertia
due to the influence of the external air 18 determined and
deducted from the virtual momend of inertia. The ap-
parent additional moment of inertia 8 obtained by
computations utilizing the results of experiments made
to determine the additional-mass effect for plates of various
aspect ratios.

The procedure described in this report has been used for
some time, and the data on several airplanes for which the
moments of inertia have been found are included. The
precision is believed to be within limils of = 2.5 percent,
% 1.3 percent, and + 0.8 percent for the X, Y, and Z azes,
respectively.

INTRODUCTION

The necessity for precise values of moments of inertia
of airplanes has arisen, particularly in connection with
the study of spinning. Because of the demands of this
problem, the National Advisory Committee for Aero-
nautics has developed apparatus and procedure for
adapting for airplanes the familiar pendulum method of
determining the moments of inertia of small dense
bodies. Two major difficulties were encountered in the
application of this method to the determination of the
moments of inertia of airplanes. The first concerned
the developm:nt of a system of suspension whereby
the suspended body could be made to oscillate solely
about a single well-defined axis. Hssential features of
the apparatus eventually found to be suitable and data

obtained by swinging tests with this apparatus have
been previously reported in references 1 and 2. The
second difficulty concerned the effect of the medium in
which the experiments were performed, an effect which
was large because of the low mass density of the air-
plane and hard to determine because of its irregular
shape.

The purpose of the present paper is to give a com-
plete discussion of the determination of the moments of
inertia of airplanes by the pendulum method, with
particular reference to the effects of the ambient air
on the moments of inertia, and the procedure by which
these effects are taken into account. A description of
the apparatus and test procedure used by the N.A.C.A.
and the data for several airplanes for which the mo-
ments of inertia have been found are included.

During the preparation of the paper, Mr. Miller, who
performed most of the experimental work, died, and
the paper was completed by Mr. Soulé.

APPLICATION OF PENDULUM METHOD TO AIRPLANES
BASIC EQUATIONS

For an undamped pendulum oscillating with small
amplitude in & vacuum, the equation of motion is

2
130 +b0=0 )

where I is the moment of inertia about the axis of
oscillation
b is a constant depending on the dimensions and
weight of the pendulum
and 6 is the angular displacement of the pendulum.
From the solution of this equation, the period of oscil-
lation is found

27
T=1/Tﬁ (2)
so that
I=3% )

The constant b depends upon different dimensions for
different types of pendulums.
‘When determining the moments of inertia the bifilar
torsion type of pendulum is used for the Z axis and the
501
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compound type for the remainder of the axes (figs. 1
and 2). For the bifilar torsion pendulum, the exis of
oscillation is vertical, lies midway between the two
vertfical filaments, and passes through the center of
gravity of the system. For the compound pendulum,
the axis of oscillation is horizontal and passes through
Axis of oscillation

k— coincident with
Z oxis

————
o

for the determination of the

FIGURE 1.—Alrplane and
by the b torsion pendalum method.

moment of Inertia about the Z
the points of support but not through the center of
gravity of the pendulum.

For the bifilar torsion pendulum

bem WA? .
47
and consequently —
=51 @

where W is the weight of the pendulum
Ais the distance between the vertical fila-
ments
and lis the length of the filaments.
For the compound pendulum

b=WL
and
T*WL
IT==1r5= (5)

where L is the distance between the center of gravity
and the axis of oscillation. When the compound
pendulum is used, the moment of inertia about an
axis passing through the center of gravity is given by
the equation :

T*WL

I‘0=__47T_ML2 (6)

where M is the mass of the pendulum.

DAMPING

In any practical case the motion of a pendulum will
be damped by friction, whereas the theoretical case
assumes no damping. Damping has the effect of
increasing the period over the theoretical value. It
can be shown that the effect of damping on the period
can be determined by the observation of the decrease
in amplitude during the first oscillation. Observations
during the swinging experiments have shown that the
decrease of amplitude during the first oscillation never
exceeds one tenth the original amplitude. For this
amount of damping the error in the moment of inertia
will be less than 0.02 percent, and comsequently can
be neglected.

AMBIENT AIR

Equations (4) and (6), though derived for the motion
of & pendulum in & vacuum, apply to the case of the
pendulum oscillating in air but in this case I, W, and
M refer to the virtual values of the moment of inertia,

‘| weight, and mass of the pendulum when immersed in

air. The differences between the values of I, W, and
M for motion in a vacuum and the case where the pen-
dulum is immersed in air arise from three effects: the
buoyancy of the structure, the air enfrapped within
the structure, and the additional-mass effect. A dis-
cussion of thega effects follows.

Buoyancy and entrapped air—The weight W
in equations (4) and (6) equals the true weight of the

xis of
oscillation

e.g of
3wIinging

e ——

O o Taartia ahont the Pasls by the mposnd-ponaaiam mathod, '
pendulum only for the case where the swinging is done
in a vacuum. In the practical case where the pendu-
lum is surrounded by a fluid medium, air, W equals
the virtual weight; that is, the true weight minus the
buoyancy of the structure. Weighing the pendulum
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in air gives the virtual weight so that the weighing
results can be applied directly for the determination of
the moments of inertia about the axis of oscillation.
From the virtual weight, the mass of the structure,
for use in equation (6), can be found by the equation

Ms=—VgZ+ Ve @)

where Mg is the mass of the structure
V3 is the volume of the structure

and p is the density of the air.

The total volume enclosed within the external
_ covering of the airplane, with the exception of the
volume taken up by the structure, is filled with air of
the same density as the surrounding air. This mass of
air should be considered as part of the airplane because
the major portion of it moves with the airplane,
although there is some leakage through the openings
in the fueselage and wings. Thus, the true mass of
the pendulum

M= ?W-p Vot (V—Ve)p
or
M= %’ + Vo )

Where Vis the total volume of the airplane. Similarly,
the true moment of inertia of the pendulum about its
gravity axis is made up of two parts, a constant part s
representing the moment of inertia of the structure, and
a part Iy representing the moment of inertia of the
entrapped air and varying with, the density of the air;
that is,
I = I s+ I B

where :
Izgxp 9

Additional mass.—When a body is put in motion
in a fluid a flow about the body is immediately created.
The momentum of this flow is imparted by the body,
g0 it must be considered in determining the motion of
the body. Hence, the period of a pendulum vibrating
in air is to some extent dependent on the momentum
imparted to the air by its motion through the air, a
fact noted and discussed by Green in 1836 (reference 3).
The momentum imparted to the air is proportional to
the momentum of the body. As the additional
momentum depends on the density of the air as well as
on the size of the body and its shape relative to the
direction of motion, the extent to which the period of
o pendulum is affected by the surrounding air depends
on the relative densities of the air and the pendulum.
The late Mr. K. V. Wright (reference 4) first demon-
strated that, because of the relatively low mass
density of the airplane, it is necessary to consider the
additional-mass effect when determining its moments
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of inertia by the pendulum method. It is well to
note that although the effect of the surrounding
medium is commonly called the additional-mass effect,

-the theory actually deals with the additional momen-

tum, and it is only because the additicnal momentum
remains proportional to the momentum of the body for
a given motion that an equivalent additional mass may
be used.

The effective moment of inertia of the additional
mass of a pendulum about its axis of oscillation may be
represented as

I, +M, I

where I, is the additional moment of inertia about
the center of gravity and M, is the additional mass
for the conditions under consideration, if the center
of the additional mass is assumed to coincide with that
of the pendulum. Thus, equations (4) and (6) may
be expanded to the following forms

- 2 2
Iy=Is+IE+IA=%

for the bifilar torsion pendulum, and

T*WL (W
472 g

(10)

Iy=Is+ Lo+ Is= +Vpk M )2 (1)
for the compound pendulum, where [ is the virtual
moment of inertia about the center of gravity.

VIRTUAL MOMENTS OF INERTIA

Assuming that Iz, I, Vp, and M, can all be evalu-
ated, three different moments of inertia for each axis of
the airplane can be determined by swinging the air-
planein air. These are: the virtual moment of inertia,
the true moment of inertia of the airplane consisting
of the moments of inertia of the structure and the air
entrapped within the airplane, and the moment of -
inertia of the structure.

The virtual moments of inertia are obtained directly
with the bifilar pendulum. With the compound
pendulum they can be obtained either by evaluating
Vp and M, or by swinging tests with two pendulum
lengths. The term Vp can be readily calculate_d from
consideration of the airplane dimensions. The method
for calculating the term M, is discussed later in con-
nection with the general subject of determining ad-
ditional mass characteristics. The method for deter-
mining I, experimentally will be apparent from con-
sideration of equation (11), in which the unknown
terms are Iy and (Vp+2M,). Thus, by swinging with
two different pendulum lengths, two simultaneous
equations in two unknowns are obtained.

TRUE MOMENTS OF INERTIA

The true moments of inertia are obtained by comput-.
ing I, for each of the body axes and subtracting the
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values thus found from the virtual moments of inertia.
The method of computing I, is explained in the sec-
tion on additional mass. The true moments of in-
ertia vary slightly with altitude owing to the fact that
Iz is dependent on density. The term I is very small,
however, so that its variation with altitude can be
neglected.
SUPPORTING MECHANISM

Thus far the discussion has assumed & pendulum
made up solely of the airplane. In general, however,
the total mass of the pendulum includes the mass of
additional equipment required for supporting the air-
plane in the desired manner. Experience in swinging
airplanes has shown that it is practically impossible
to reduce the weight of the additional structure to a
negligible amount. The use of & strong rigid swinging
gear has been found to be the best means of handling
the airplane. This gear is integral in itself and is
handled and swung as an independent pendulum. The
moment of inertia of this gear as an independent unit
is found so that it can be subtracted from the moment
of inertia of the complete assembly consisting of
swinging gear and airplane. The equations when the
gear 1s used become, for the bifilar torsion pendulum,

WA TrAW,A2

1621 1627 (12)

IV-'

and, for the compound pendulum

_TAW L TeWal, (W
4 4 g

where the subscripts ! and 2 refer to the total pendulum
and gear, respectively.

Iy

+ Vot M) (13)

ELLIPSOIDS OF INERTIA

In the study of spinning it is necessary that the ellip-
soid of inertia of the airplane be known for the determi-
nation of the gyroscopic couples acting on the airplane
during a spin. It has been noted in practice that the
principal axes of the ellipsoid nearly coincide with the
body axes of the airplane. Xor every airplane swung,
however, it is well to determine the position of the
principal axes of the ellipsoid with respect to the body
axes and, if there is an appreciable displacement
between them, to compute the moments of inertia
about the principal axes.

As the airplane is symmetrical about the XZ plane,
the ¥ body axis coincides with the Y principal axis
and it is only necessary to determine the positions of
the principal axes in the XZ plane. The orientation
of the principal axes in the XZ plane is found by deter-

mining the moment of inertia about & third axis in this -

plane at & known angle from the body axes. With
these data the product of inertia, D, about the X and
Z body axes can be computed by the formula,
D—A cos® 0+ O'sin® 0~ I,
sin 26

(14)
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where A is the moment of inertia about the X body
axis
C is the moment of inertia about the Z body
axis
I.; is the moment of inertia about the third axis
in-the XZ plane
and # is the angle between the X and the XZ axes.
The angle  between the X body axis and the X prin-
cipal axis can then be found

12D
04
The moments of inertia about the principal axes are
given by the following equations:
A=A cos® 7+ O sin*r+ D sin 27
BV=RB
"= A sin® 1+ 0 cos’r—D sin 27

DETERMINATION AND DISCUSSION OF ADDITIONAL
MASS CHARACTERISTICS

An analogy with the momentum imparted to the air
by the motion of flat plates provides a basis for the
determination of the additional mass effect of the air-
plane. For a flat plate (or circular eylinder) of infinite
span moving with velocity V normal to its surface in
air, assumed to be an incompressible and frictionless
fluid, aerodynamic theory gives the momentum of the
air per unit span as

-r=-%tan (15)

(16)

prV
4 )

where p is the density of the air and ¢ is the chord of
the plate (or diameter of the cylinder).

For finite plates with end flow, the total momentum
of the air for this type of motion can be expressed as

koc*xbV
4

(18)

where k is the coefficient of additional momentum for
motion normal to the plate and b is the span of the
plate. The value of £ depends on the aspect ratio of
the plate. For motion parallel to the plane of the
plate, the additional momentum is zero.

For rotation of the plate about an axis passing
through its center the additional angular momentum
can be expressed by the introduction of a coefficient
k’. Thus, for rotation about the mid chord, the angu-
lar momentum of the additional mass is

k prc?b%Q

a8 (19)

where k is the coefficient for rotation about the mid
chord of a plate of aspect ratio b/e, and @ is the angular
velocity.

A similar expression with & different coefficient &’/
may be written for rotation about an axis paralle] to
the span and passing through the center of the plate.
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If b and ¢ are still regarded as the major and minor
dimensions of the plate respectively, the corresponding
‘expression for this type of motion becomes

k' prcb®Q

48

and the aspect ratio to which %’/ applies is ¢/b.
When the rotation is about an axis in the plane of

(20)

the plate parallel to either the chord or the span but .

not passing through the center of the plate, the addi-
tiona] angular momentum may be expresgsed as

k pnc?*Q | kpxbQl
8 T 2 1D

or

k' pwc?b*Q | kepc?wbQl?
s T 1 22)

respectively, where [ is the distance from the center of
the plate to the axis of rotation. It is worth noting
that, in general, the first term of equation (22) can be
neglected owing to the small effective aspect ratio.

3.
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The coefficients k and %’ for use in equations (23) and
(24) are given in figure 3. The values for £ were
obtained from experimental date given by Pabst
(reference 5) for plates of aspect ratios up to 4. The
extrapolation to aspect ratio 10 was made through the
use of the approximate empirical formula for the curve

. 0.537
E=l-4F.

As Pabst’s experiments were performed with small
plates in water, it was desirable to check at least one
vealue of £ under conditions similar to those met in the
swinging tests of the airplane. Xor this purpose a
plate 20 by 5 feet was constructed of a wooden
framework covered with doped fabric. The plate was
swung with its plane vertical about an axis parallel to
the span and 13 chord lengths above the center of the
plate and its virtual moment of inertia about the axis

(25)

| of oscillation was determined. The moment of inertia
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Fiaure 3.—Coefliclents of additional mass and additional moments of inertia for flat plates.

It is further apparent that the above expressions,
equations (21) and (22), also apply to the case in which
the axis of rotation lies outside the plane of the plate.
In that case, the displacement of the axis from the plate
results only in an additional component of motion
parallel to the plane of the plate, which imparts no
additional momentum to the air. Thus it can be
stated that the additional angular momentum ig
independent of the distance of the plane of the plate
from the axis of rotation. The additional moment of
inertia is found by eliminating @. Then, if the first
term of equation (22) is neglected, additional moments
of inertia become

k pmwe*t® n kpmc2bl?
48 4

(23)

for rotation about any axis parallel to the chord and

kpwc®bl?
4

(24)

for rotation about any axis parallel to the span, where [
is the distance in the plane of the plate from the center
of the plate to the axis of rotation.

40768—34——33

of the structure was found by swinging the uncovered
framework, and adding to the moment thus obtained
the computed moment of inertia of the fabric. The
additional moment of inertia of the plate, the difference
between the virtual moment of inertia and the moment
of inertia of the structure, was divided by the square of
the pendulum length to find the additional mass.
From the additional mass, & was computed. The
value of % obtained in this manner agreed within 1
percent of the value given by the curve for aspect
ratio 4.

As the additional mass of the fuselage is the most
important additional-mass item in determining the
virtual moments of inertia about the center of gravity
from the swinging-test results, and as the fuselage
obviously is not similar to & flat plate, an attempt was
made to obtain a satisiactory value of % for fuselages.
A box 20 by 5 by 5 feet was constructed and the
coefficient % found by swinging tests for motion nor-
mal to one of the faces, & being based only on the
dimensions of the face. The value obtained was 1.20,
whereas, as shown in figure 3, the value of % for a
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plate of aspect ratio 4 is 0.9. As fuselages usually
have a depth greater than their width, £ will have a
value between 0.9 and 1.20. In practice it was decided
to use 1.0.

The values for %2’ were found by experiment. The
program for the experiments was arranged in such a
mapner that it was possible, when obtaining check
observations, to verify the assumption that the addi-
tional moment of inertia of a plate about a given axis

1.0 <XL\
v .8 g
ey o'
o2 |
ola .6 1
g — Aspect ratfio=4
38 g o L=c¢
;k_ * x «=({fc
<k a »=2c¢
N2
o 2 4 6 8 10

Dihedral angle, degrees
F1auRE 4.—Variation of the additional moment of inertia of a single plate with
dihedral.

is independent of the distance from the axis to the plane
of the plate. Four plates having aspect ratios of 2, 4,
6, and 8 were used in the experiments. These plates
had & span of 4 feet and a thickness of one-fourth inch,
and consisted of light wooden frameworks covered
on both sides with paper. Each plate was swung at
four pendulum lengths with its plane horizontal and
its chord parallel to the axis of oscillation. In terms
of the chord the pendulum lengths were 1, 1%, 2, and
235, 'The additional moments of inertia were found

3.0

e
1

N
Q
=

Aspect raotio=6
b v =4

o~
Q

4, monopl:
o

o K .8 1.2 1.6 2.0
Gap/chord
F1aure 5.—Varlation of additional moment of inertia with gap-chord ratio fo
orthogonal biplanes. 3

by deducting the computed moments of inertia of
the structure of the plate and of the entrapped air
from the virtual moments of inertia determined from
the swinging tests. The values of the additional
moments of inertia found in this manner for each plate
showed a slight amount of dispersion for the different
lengths, but the variation was not consistent with
pendulum length and was within the precision of the
experiments. The curve for coefficient %’ (fig. 3)
represents the average values of the additional
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moments of inertia obtained for the different aspect
ratios.

Additional experiments were performed to determine
the effect of dihedral on the coefficient %’ and the
manner of treating biplanes, The value of %’ was
found to decrease with dihedral, as shown in figure 4,
the decrease being in the order of 10 percent for 4°
dihedral. In the biplane experiments gap-chord ratios
of ¥, 1, and 13 were investigated for orthogonal
biplane cellules consisting of plates having aspect
ratios of 4 -and 6. The results are given in figure 5.
From these results it is concluded that for normal gap-
chord ratios each wing of a biplane may be treated as
an independent plate.

In the application of the general expressions for the
additional moments of inertia of flat plates (equations
(23) and (24)) to the airplans, the principel parts of
the airplane are considered independently on the basis
of their projected area in the XY, XZ, and YZ planes.
Thus, in the determination of the additional moments
of inertia of the airplane about an axis of oscillation
parallel to the X body axis, the fuselage with length b
and depth ¢ and L— z feet below the axis of oscillation
will contribute an amount

Tpc2xb(L—2)? (26)
4

to the total moments of inertia, where z is the distance
in the XZ plane from the X body axis to the center of
the additional mass of the fuselege and is positive when
the center of the fuselage is above the center of gravity.
The distance z, however, is usually small and can be
neglected and the equation written

kpc*xb?
4

27)

The vertical tail surface of the airplane can be
treated similarly. The axis of oscillation lies in the
plane of symmetry of both the wings and the hori-
zontal tail surface so their additional moments of
inertia are independent of L.

In general it is necessary to consider only these
items. Thus, the total additional moment of inertia
about the axis of oscillation equals

7 2, 3 ’ 2, 3 2 2 2 2
k., nggﬂ'bw +km pzhéﬂ'bm +kfp0f4ﬂ'bfL +k,,pc,,4ﬂ'b,,L (28)

where the subecripts w, A, f; and tt refer to the wings,
horizontal tail surface, fuselage, and vertical tail
surface, respectively, or

T+ M2 (29)

where I, is the additional moment of inertia about the
X axis and M,, the additional mass for translation
along the ¥ axis. Similar treatment may be applied
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to the Y axis and Z axis. For the Y axis, M, may be
neglected and for the Z axis L is, of course, zero.

1t should be noted that in special cases, as for float
seaplanes, it may be necessary to consider other items
than those mentioned and that z may not always be
neglected.

APPARATUS AND PROCEDURE FOR SWINGING TESTS
SWINGING GEAR

The swinging gear is the apparatus used for support-
ing the airplanes during the swinging experiments. It
has been constructed so as to be adaptable for airplanes
up to 6,000 pounds. When used for a compound
pendulum it consists of a cradle, tie rods, and knife-
edges assembled as shown in figure 2. The cradle is
a rectangular frame made of two I-beams for support-
ing the airplane and two light angle irons for spacers.
The spacers are drilled to permit the distance between
the I-beams to be changed to suit airplanes of different
sizes. The knife-edges (fig. 6) provide a definite axis
about which the pendulum oscillates with very little
friction. They are mounted on & track so that their
spacing can be varied when necessary. The tie rods
are used to join the cradle to the knife-edges. The
length and arrangement of the pendulum are varied by
use of different combinations of the tie rods. )

When used as a bifilar torsion pendulum, the swing-
ing gear congists of the same essential parts as before,
with the addition of two universeal joints (fig. 7) and
a spacer at the lower ends of the vertical members,
assembled as shown in figure 1. The universal joints
provide definite points of oscillation at the lower ends
of the filaments. The spacer between these joints
prevents a change in distance between the lower end
of the vertical members when the pendulum is
oscillating.

The weight, length, and center-of-gravity location
of every part of the swinging gear are known so that
no matter what arrangement is used it is a relatively
gimple process to compute the weight and center-of-
gravity location of the assembly. The moment of
inertin of the gear is found by swinging it as an indi-
vidual pendulum.

DETERMINATION OF THE CENTER OF GRAVITY

As the center of gravity of the airplane is the origin
of the axes about which the moments of inertia are to
be found its location is determined before any swinging
is done. The method used for locating the center of
gravity is based on the principle that the center of
gravity of a body suspended from a single pivot lies
on a vertical line through the point of suspension.
In its simplest form the method consists of suspending
the airplane from two successive points in the XZ
plane, and projecting & plumb line from each point of
suspension on the side of the fuselage by means of a
transit set up with its optical axis in a plane contain-
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ing the point of suspension and perpendicular to the
X7 plane of the airplane. The intersection of the
two lines locates the vertical and longitudinal position
of the center of gravity. Itslateral position is assumed
to be in the plane of symmetry.

In practice it is not usually convenient to follow
the simple method outlined above, because of the

Hardened steel
seaf for

/ knife-edge
7.

Hardened steel

| — knife-edge

difficulty in finding points of attachment on the air-
plane that do not endanger the structure. A satis-
factory method employing the use of the swinging
gear assembled as a compound pendulum is therefore
usually followed.

Hardened stee/

FI1GURE 7.—Universal Joint. -

When the latter method is used the plumb line for
the entire mass, airplane and swinging gear, is found
as previously described and a correction is made for
the effect of the swinging gear. Before the airplane
is placed on the gear the variation of angle of the cradle
with applied moment is determined by hanging known
weights on one side of the cradle. By this procedure
8 calibration showing the moment corresponding to
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any position of the gear is obtained. The airplane
is then weighed and mounted on the gear with the X
axis parallel to and equidistant from the I-beams, and
in such a position that the angle assumed by the
cradle is about 12° to 15°. ‘The moment of the gear
about the knife-edge axis is then found from the cal-
ibration and, since the moments of the gear and airplane
are equal in magnitude, the moment of the airplane
is thus obtained. The horizontal distance between
the center of gravity of the entire mass and the center
of gravity of the airplane is found by dividing this
moment by the weight of the airplane. A vertical
line drawn on the side of the fuselage at the asbove-
calculated distance from the plumb line will then pass
through the center of gravity. The fore-and-aft
position of the airplane relative to the gear is then
changed so that the inclination of the cradle is ap-
proximately as great as before, but in the opposite
direction, and a second vertical line is drawn through
the center of gravity. As by the first method, the
intersection of these two lines locates the vertical and
longitudinal position of the center of gravity of the
airplane. A check is obtained by moving the airplane
until the gearislevel. A plumb line through the knife-
edge axis should then pass through the intersection of
the two lines previously established.

DETERMINATION OF PENDULUM CHARACTERISTICS

The second:method of determining the center of
gravity just described leaves the airplane suspended
level and in position for swinging about an axis par-
allel to the Y axis. Thus, it is usually convenient to
make this swinging test the next step in the procedure.
The characteristics of the compound pendulum that
must be measured are the weight, pendulum length,
and period. The weight equals the sum of the weights
of the airplane and the gear. The pendulum length is
determined by measuring the difference in elevation
of the center of gravity of the airplane and the knife-
edges by means of a transit. The center-of-gravity
location of the gear relative to the knife-edges, as pre-
viously mentioned, is computed from a knowledge of
the constituents of the gear. From the center-of-
gravity locations and weights of the airplane and gear,
the center of gravity of the system is found. The
period is found by timing 50 or more oscillations. The
change of length for the check swinging is obtained by
adding an additional length of tie rod in each of the
four supports. When making this and other changes
the weight of the airplane is never taken off the cradle,
the cradle being temporarily supported by a chain
hoist. The determination of the moment of inertia of
the gear is, for convenience, left until all swingings
with the airplane in place have been completed.

In order to place the airplane in position for the
X-axis swinging, the cradle is disconnected from the
tie rods, turned 90°, and again fastened to the tie rods.
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The spacing of the knife-edges is changed, if neces-
sary. For the XZ axis, additional tie rods are added
to either the two front or the two rear supports.

For the Z-axis swinging test the gear is assembled as
shown in figure 1. The filaments are made vertical
by proper spacing of the knife-edges. With the
bifilar torsion pendulum the necessary measurements
are the weight, the spacing and length of the filaments,
and the period. Care must be taken in starting the
motion to obtain an oscillation about a vertical axis,
half-way between the filaments. The weight and
period are obtained as before. The spacing and
length of the filaments are measured directly.

COMPUTATIONS

The virtual moment of inertia about the Z axis is
found by direct substitution of the pendulum char-
acteristics in equation (12). When computing the
virtual moments of inertia about the XY and XZ
axes the buoyancy and additional mass are first cal-
culated and substitution is made in equation (13).
The check computation is made by substituting the
values obtained from the swinging experiments for
the two pendulum lengths in equation (13) and solv-
ing simultaneously for I,. Computation of I, is

‘made on the basis of the equations given in the section

on additional mass. Sample computations for the
VE-7 airplane are given in the appendix.

PRECISION

The precision with which the moments about the
body axes of an airplane can be found depends upon
three items. The first item is the precision with
which the virtual moments of inertia about the axis of
oscillation can be found with the swinging gear and
by the procedure outlined. The second item is the
precision with which account is taken of the buoy-
ancy and additional mass in transposing the com-
pound pendulum results from the axis of oscillation
to the body axes. The third item is the precision of
the computation of I,, the additional moment of
inertia.

The precision with which the moments of inertia
about the axis of oscillation can be found was checked
by swinging & railroad rail at the pendulum lengths
usually used for airplanes. The rail was a dense
homogeneous body of regular dimensions, for which
the moment of inertia could be calculated and the
buoyarcy and additional mass neglected. The
moment of inertia of the rail was comparable to that
of a small airplane. The magnitude of the disagree-
ment between the calculated and experimental values
of the moments about the axis of oscillation for either
type of pendulum never exceeded an amount equal to
1 percent of the moment of inertia of the rail about
its center of gravity. Recent improvements in the
swinging gear have tended to improve the precision
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so that it seems permissible to assume that the error
in determining the virtual moment of inertia about
the knife-edge is less than 0.5 percent of the true
moment of inertia about the center of gravity.

As no transposition is necessary for the bifilar sus-
pension, the discussion of the second item refers only
to the determination of the moments of inertia about
the X and Y axes. The magnitude of the combined
effects of buoyancy and additional mass that must be
considered in determining the virtual moments of
inertia about the body axes of the compound pendulum
is small in relation to the desired moments of inertia.
Consequently, fairly large errors in determining these
effects lead to but small errors in the final results.
Experience has shown that the correction attributable
to the buoyancy is about 3 percent of the moment of
inertia about the cenfer of gravity. If reasonable
care is taken in computing the volume, the buoyancy
can be obtained with an error of less than 10 percent.
Such an error will introduce an error of 0.3 percent in
the final result. For the X axis, the effect of the
additional mass amounts to about 5 percent of the
desired result; for the ¥ axis it is negligible. Although
the effects of some parts of the airplane are neglected
in computing the additional mass, it is believed that
the error in the computation is not greater than 10
percent, hence that the error in the final results attrib-
utable to the computation of the additional mass is
less than 0.5 percent. The maximum resultant error
attributable to these two causes would then be 0.8
percent.

Consideration of the above-enumerated items con-
cerning the precision with which the virtual moments
of inertia about the body axes are obtained leads to
the conclusion that for the X and Y body axes the
precision is within +1.3 percent and for the Z body
axis is within +0.5 percent, the greater precision for
the Z axis arising from the fact that no transposition
of axes is required. In practice it is customary to
obtain check values by swinging the airplane at two
different pendulum lengths and to average the results
if there is a discrepancy. On the basis of the small
magnitude of the discrepancies experienced it is
assumed that the precision thereby obtained, partic-
ularly for the compound pendulum, is slightly im-
proved so that the final error for the X and Y axes is
less than =+ 1 percent.

One remaining source of error in determining the
true moments of inertia arises from the possibility of
error in determining I,, the additional moment of
inertin. For the X body axis, owing to the influence
of the wings, this term has been found to be as great
as 20 percent of the true moment of inertia in one case
but has an average value of 15 percent for the remain-
ing cases. For the Y and -Z body axes this term
amounts to only about 3 percent. The values of I,
are believed to be precise to within =+ 10 pércent. In
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terms of the true moments of inertia, an error of this
magnitude for the average case would amount to
+ 1.5 percent for the X axis and =+ 0.3 percent for the
Y and Z axes. Consideration of these possible errors
and those that may be incurred in determining the
virtual moments of inertia leads to the conclusion
that errors in the true moments of inertia are less than
+2.5 percent for the X axis, 1.3 percent for the
Y axis, and +0.8 percent for the Z axis.

Because of the nature of the airplane, the principal
axes of the ellipsoid of inertia are never more than a
few degrees from the body axes, and the product of
inertia is only a small percentage of C— A. Counsidera-
tion of these facts and the possible error in virtual
moments of inertia leads to the conclusion that the
limits of the precision with which the angle of the
principal axes can be determined are +1°.

There are several practical considerations in the con-
struction and operation of the swinging gear that have
been found by experience to have considerable bearing
upon the precision of the results obtained with it. In
the construction of the gear, care should be exercised
in meking absolutely certain that the oscillations take
place about the pivots provided for that purpose. The
knife-edge supports should be rigidly placed, and for the
compound pendulum the tie rods from the corners of the
cradle should be carried directly to the kmife-edges.
The importance of the latter requirement was brought
out during development of the gear, when an arrange-
ment similar to that for the bifilar torsion pendulum,
but with no universal joints at the lower ends of the
vertical members, was tried for the compound pendu-
lum. Thisarrangement gave erratic results and inspec-
tion showed that the vertical members were flexing for
a short distance from both ends. Similarly for the
bifilar torsion pendulum, the universal joints and spacer
bar are necessary to obtain the motion desired.

Although the pendulum dimensions are governed
somewhat by the size and type of airplane to be swung,
it has been found by tests that they should also be gov-
erned as far as possible by other considerations. The
compound pendulum should be kept short so that the
moment of inertia about an axis through its center of
gravity will be a large percentage of the total moment
of mertia of the pendulum about the axis of oscillation.
Pendulum lengths of approximately 4 to 10 feet have
given satisfactory results with airplanes weighing up to
5,000 pounds. In tests of the bifilar torsion pendulum
with varied lengths of the vertical filaments and with
a fixed distance between them, it was found that the
most satisfactory results were obtained when the length
of the filaments was greater than the distance between
them. It has been found satisfactory and convenient
in swinging various airplanes to place the vertical fila-
ments about 8 feet apart.

The oscillations of both the compound and bifilar

ndulums should have a smell amplitude because the
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pendulum formulas used apply only when the assump- ! moments of inertia by a summation of the moments

tion sin 6=tan 6§ =6 (where 6 equals one half the angle
of oscillation) is valid. In practice, this angle need
not exceed 2°. _

The precision of the measurement of length of the
compound pendulum depends primarily upon the accu-
rate location of the center of gravity of the airplane.
Ifitisnotlocated accurately, the pendulum dimensions
will be in error even though subsequent measurements
are very precise. :

Swinging the airplane 2t two pendulum lengths abou
each axis,not only is useful in checking the additional-
mass effect, but also provides a check on the swinging
tests themselves. Similarly, it is a good practice to
swing the airplane in both the nose-up and nose-down
attitudes to afford a check on the position of the prin-
cipal inertia axes of the airplane.

RESULTS OBTAINED FOR SEVERAL AIRPLANES

The method given in this report for the determina-
tion of the moments of inertia has been used regularly
by the Committee and, in all, the moments of inertia
have been found for 13 airplanes. These results are
listed in table I. The angle between the X body and
the X principal axis, being small, is omitted. The
additional moments of inertia about the three axes are
given.

DETERMINATION OF MOMENTS ,OF INERTIA BY

CALCULATION

There are times when it is desired to estimate the
moments of inertia of airplanes not available for swing-
ing tests. It is usual in these cases to compute the

of inertia of the constituent parts. As the accuracy
of the results of such computations has been ques-
tioned, it was decided to check tha results by com-
puting the moments of inertia for an airplane for which
the moments of inertiahave been found experimentally.
The computations were made carefully; a balance
diagram was used to locate the parts relative to the
center of gravity, and the true weights of each part
were found by weighing the individual parts for the
airplane in question. On comparison of the com-
puted with the experimental values of true moments
of inertia, it was found that the computed value was
in error by 6 percent for the X axis. For the other
axes the error was less.

CONCLUSIONS

1. The pendulum method for finding moments
of inertia can be successfully applied to airplanes.

2. Owing to the effect of the ambient air, the virtual
moments of inertia obtained directly through applica-
tion of the pendulum formulas are considerably greater
than the desired true moments of inertia.

3. The effects of the ambient air can be determined
with sufficient precision so that the true moments of
inertia may be obtained from swinging experiments
with an error of less than +2.5 percent, + 1.3 percent,
and 0.8 percent for the X, Y,and Z axes,respectively.

LangrLeY MEMORIAL AERONAUTICAL LLABORATORY,
Natrionar ApvisorY COMMITTEE FOR AERONAUTICS
LawerLeY FreLp, Va., June 8, 1933.



APPENDIX

SAMPLE COMPUTATIONS

The following are sample data and computations for
determining the ellipsoid of inertia for the VE-7
airplane.

VIRTUAL MOMENTS OF INERTIA

For the X body axis the compound pendulum is
used and the equation for the virtual moment of
inertia about the axis is

W\TvL, WeIPL, (W
r? dn?

The experimental data obtained by swinging the
airplane about axes parallel to the X axis are:

Iyy=

B+ Vot M >L2

Long suspension |

-l 2,208 pounds.

---] 2,684 pounds
.| 376.1 pounds.

13.81 feet.

The volume V is computed from the dimensions of
the airplane. Only the fuselage and wings are con-
sidered. The fuselage is treated in.three sections:

Average
Bection Length| cross-sec-| Volume
tion
Sguare
Feet fead Cublc feat
1 7.5 7.95 5.7
2. 7.0 6.51 45.5
3 7.0 2.08 14.8
Total volume of fuselage, V,r_r _____ i 119.8

The volume of the wings is determined by the equa-
tion
Vo=0.745¢t

where S is the wing area =312 square feet
and ¢ is the maximum ordinate of the wing=0.298
feet from which

V=0.74X312X0.298 =69 cubic feet
then
V=V,+V,=119.8+69=188.8 cubic feet

The tests were made at sea level under approximately
standard conditions so that

p=0.00238 slug per cubiec feet

The additional mass is computed only for the fuselage
and vertical tail surface. The fuselage is again divided

into three sections.
unity, so

M= pc?WiAb)l L pc%‘wiAb)g " pc§1r4(Ab)3

The cot?fﬁcient k is assumed to be

where ¢3, ¢, and ¢ are the mean values of the squares
of the fuselage depths for each of the three sections.

Section Ab =) AM,
Feet Sqg. . Sug
1 7.5 9.50 0.133
2 7.0 9.00 118
.3 7.0 5.14 067
Total additlonal mass for fuselage ,Mdf'—' .318
!

The vertical tail area of this airplane may be con-
sidered of circular shape and its additional mass as

P
MA;=TT€'
where D=4 feet

X (4)%%0.00238
6

g0 M,,= =0.079 slug

and M,=M, +M,,=0.318+0.079=0.397 slug.

Substituting in the compound-pendulum formula:
Short suspension

2591 X (3.759)*X9.05 383.3 X (3.209)*X 6.382
39.48 39.48

va=

2208
3. 147+ (188.8X0.00238) +0. 397](9 513)3

= 1463 slug feet?
Long suspension

2584 X (4.378)*X13.81 376.1X (3.931)*X10.84
39.48 39.48

IVX:‘_

2208
35147 a5 + (188.8X0.00238) +0. 397](14 32)*

=1474 slug feet?

The average value of Iy, is 1469 slug feet®.

Iy, is checked by solving the equations for the two
suspensions simultaneously, Iy, and Vp+ A, being the
unknowns.

Iy =1545+ (Vp+M,) (9.513)
Iy = 1649+ (Vp+ M,) (14.32)2
Iy, =1462 slug feet *

The agreement is within 0.5 percent.
511
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The virtual moments of inertia about the ¥ axis and
the XZ axis are calculated in a similar manner from
the data obtained with the compound pendulum. In
the case of the Y axis, the additional mass is very small,
and therefors neglected. In the case of the XZ axes,
the additional mass is the same as for the X axis.

The equation for the bifilar pendulum which is used
for a determination of the virtual moments of inertia
about the Z axis is

1 T WTiar
Vz7 16+ 1677
The experimental data obtained by swinging are
8hort suspension Long suspension
) — g
T 2.622 seconds.
Ty, 3.238 seconds 3.398 geconds.
A 9.917 feet. 9.917 feet.
[ 7.412 feot feet.

From which is obtained:
Short suspension

2575 X (3.622)?X (9.917)?
157.92 X 7412

367 X (3.238)*% (9.917)?
157.02 X 7412

IVZ=

=2515 slug feet?

Long suspension
7. 2575 (3.808)X (9.917)*
vz 157.92 X 8.237

367X (3.398)2X (9.917)?
157.92X8.237

=2505 slug feet?

the average of which is 2,510 slug feet®.
The average value of the moment of inertia about
each axis is as follows:

Iy =1469 slug feet?
Iy, =1498 slug feet?
Iy, =2510 slug feet?
Ipy,=1546 slug feet?® (from mnose-up swinging,
X axis inclined 13.4°)
Iy -,=1490 slug feet? (from nose-down swinging,
X axis inclined 13°)
ADDITIONAL MOMENTS OF INERTIA

The additional moment of inerfia about the X axis
is assuméd to be contributed only by the wings and
the horizontal tail surface. The X axis is in the plane
of symmetry of both the wings and the tail surface.
The equation for the additional moment of inertia for
this case is
k p?=l?

La==—733

For the wings
¢=4.62 feet b5=34.33 feet aspect ratio=7.4
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then, from figure 3, .
 k'=0.89
and
_ 2X0.890.00238 X (4.62)* X = X (34.33)3
w 4
=241 glug feet? °
For the horizontal tail
¢=4.08 feet 5=9.50 feet aspect ratio=2.5
then
k'=0.62
and

Y

T4

_ 0.62X0.00238 X (4£.08)*X & X (9.50)°
¢ 48

=1.3 slug feet®
so that for the X axis

Tag=T4,+1s,=241.0+1.3=242.3 slug feet?

The principal items that contribute to the additional
moment of inertia about the Y axis are the fuselage
and horizontal tail surface. For the horizontal area

.of the fuselage an equivalent rectangle is considered,

with length equal to that of the fuselage, and width
equal to the square root of the mean square of the
fuselage width. The dimensions are

b=18.3 feet ¢=2.07 feet aspect ratio=8.8
for which
k'=0.95

As the Y axis is parallel to the chord but is displaced

from the center of the additional mass of the fuselage

by a distance [,

k' pcAwb®
48

kpc?xbl?
4

IAI"‘ +

The constant % is assumed to be 1.0 and
{=4.1 feet
Thus

_ 0.95<0.00238 X (2.07)2 X =X (18.3)%
! 48
T 1.0X0.00238X (2.07)2 X X 18.3 X (4:.1)_2
4
=6.3 slug feet?

The Y axis is parallel to the span of the horizontal
tail, so that

1,

L= kpc:rbl’

where k=0.78 and [=15.8 feet
and

- IA‘

_0.78<0.00238 X (4.08)* X =X 9.50 X (15.8)*
4

= 57.6 slug feet?
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Then for the ¥ axis
Tap=T4+1,,=63+57.6=63.9 slug feet?

The determination of I, is similar to that for L.,
with the difference that the vertical fuselage and tail
areas are considered;

I,,=31.6 slug feet?

TRUE MOMENTS OF INERTIA

The true moment of inertia about any axis is the
difference between the virtual moment of inertia and
the moment of inertia of the additional mass about
that axis. Thus

A= IVX_ IAX= 1469 —242=1227 Shlg feet?
B=1Iy,—I,,=1498— 64=1434 slug feet’
O=1Iy,—IL,=2510— 32=2478 slug feet?
Ixz(nose-up) = Iy, (nose-up) — L4, =1546 — 242
=1304 slug feet?
Igz(nose-down) = Iy, (nose-down) — I, = 1490
—242=1248 slug feet?
Location of Principal Axes: '
The product of inertia about the body axis is given

by
A cos?0+ C sin?0— Ixs

D= gin 26
where
Nose-up Nose-down
0= —13. 4° 13.0°
sin = —0.2317 0. 2250
cos = . 9728 . 9744
sin 20= —. 4509 . 4384

and the moments of inertia are as given above
From the nose-up swinging

De 1227 X (0.9728)% 42478 X (—0.2317)*— 1304_21 5
—0.4509 i
From the nose-down swinging
) 2 2_
D= 1227 X (0.9744)%+ 2478 X (0.2250)*— 1248 96.7

0.4384
the average of which is D =59.1
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The tangent of twice the angle between the principal
axis and the X axis is given by

m21=%

2X69.1
2478 —1227

7=2°49/
Principal Moments of Inertia:
The principal moments of inertia are given by
AV= A cos?r+C sin’*r+ D sin 27

. tan 27= =0.09445

BV=RB
"V = A sin®*r + C cos*r—D sin 27
then, since
7=2°42’
sin 7=0.0471
cos 7=0.9989
gin 27=0.0941

and the other quantities are as previously determin.ed,
it follows that

ATV =1227 X (0.9989)%+ 2478 X (0.0471)%+59.1 X 0.0941
=1236 slug feet?

B =1434 slug feet?

OV = 1227 X (0.0471)2 42478 X (0.9989)*—
=2471 slug feet?
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TABLE IL—MOMENTS OF INERTIA OF SEVERAL AIRPLANES

Weight A B C Tay Tay Tay
Alrplane Typo " | g 1.9 | (sug 16| (g 9 | (slng .9 | elog 1.9 | erag e
VE-T ececccccannns Naval training, biplane lJandplane 2,208 1,227 1,434 2,478 242 64 32
- Arm tralning, biplane landplans. 2,512 1,067 2,088 3,280 8 80 54
y pursult, bli)lans ]and&:lnne ..................... 2,885 1,200 1,888 2.648 101 42 25
NY-1 Naval training, biplane landplane..._.- 2,622 2, 088 2,450 3.807 238 80 80
Commarcial monop]ane, 1,388 596 669 971 97 14 9
aval observation, biplane landplan 3,550 2,482 2,796 4,481 335 8 49
Naval fighter, biplape landplane.___ 2, 540 3,023 1, 560 2,077 124 30 15
Army observation, biplane landplane._. 4,858 2, 507 4,133 8,231 370 105 59
Naval training, biplane lnndplane.._--_ 2, 544 2,409 2,239 4,099 347 87 44
Naval training, biplane landplane...._. 1, 567 733 922 1,209 88 22 17
.| Naval observation, biplans landplane.. .. cooo_| 4,087 2,740 3,283 5112 335 84 49
F4B- Naval ﬁghtar biplane landplans. oo .. 2,818 1,063 1,706 2,378 124 30 15
MoDonnell ...o.o..-| E. i d ﬂa low-wing monoplane equipped with 1,708 1,345 1,101 2,279 167 42 28
ots and flaps.




